蚁群算法
算法介绍
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
蚁群算法应用广泛,如旅行商问题(traveling salesman problem,简称TSP)、指派问题、Job-shop调度问题、车辆路径问题(vehicle routing problem)、图着色问题(graph coloring problem)和网络路由问题(network routing problem)等。本文以TSP问题为例进行介绍。
蚁群算法这种算法具有分布计算、信息正反馈和启发式搜索的特征,本质上是进化算法中的一种启发式全局优化算法。
TSP问题
旅行商问题,即TSP问题(Travelling Salesman Problem)又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。
假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。
启发式算法
启发式算法是一类用于寻找复杂优化问题近似解的方法,特别适用于在计算资源有限的情况下求解大型问题。与精确算法不同,启发式算法不保证找到全局最优解,但能在可接受的时间内提供一个质量较高的解。
经典的启发式算法包括模拟退火、遗传算法、蚁群算法、神经网络等。
算法思想
蚂蚁在行走过程中会释放一种称为“信息素”的物质,用来标识自己的行走路径。在寻找食物的过程中,根据信息素的浓度选择行走的方向,并最终到达食物所在的地方。信息素会随着时间的推移而逐渐挥发。
路径较短的蚂蚁释放的信息素量较多,随着时间的推进,较短的路径上累积的信息素浓度逐渐增高,选择该路径的蚂蚁个数也愈来愈多。最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上, 此时对应的便是待优化问题的最优解。
算法原理
算法流程
-
初始化: 在计算之初需要对相关的参数进行初始化,如蚂蚁数量m、信息素因子α、启发函数因子β、信息素挥发因子ρ、信息素常数Q、最大迭代次数t 等。
-
构建解空间:将各个蚂蚁随机地放置于不同的出发点,对每个蚂蚁k(k=1,2,……,m),计算其下一个待访问的城市,直到所有蚂蚁访问完所有的城市。
-
更新信息素:计算各个蚂蚁经过的路径长度L,记录当前迭代次数中的最优解(最短路径)。同时,对各个城市连接路径上的信息素浓度进行更新。
-
判断是否终止:若迭代次数小于最大迭代次数则迭代次数加一,清空蚂蚁经过路径的记录表,并返回步骤二;否则终止计算,输出最优解。
原理解析
设整个蚂蚁群体中蚂蚁的数量为m,城市的数量为n。
城市i与城市j之间的相互距离为 $$d_{ij}(i,j=1,2,...,n)$$
t时刻城市i与城市j连接路径上的信息素浓度为 $$\tau _{ij}(t)$$ ,初始时刻各个城市连接路径上的信息素浓度相同,设为 $$\tau _{ij}(0)=\tau_0$$
t时刻蚂蚁k从城市i转移到城市j的概率为 $$P_{ij}^{k}(t)$$
蚂蚁从i到j的期望程度(启发函数)为 $$\eta_{ij}(t)=\frac{1}{d_{ij}}$$
蚁群算法的数学表示为
$$ P_{ij}^{k}(t)=\left\{ \begin{array}{rcl} \frac{[\tau _{ij}(t)]^{\alpha }[\eta_{ij}(t)]^{\beta }}{\sum_{s\in allow_k} [\tau_{is}(t)]^\alpha [\eta_{is}(t)]^\beta } & ,s\in allow_k \\ 0 & ,s\notin allow_k \end{array} \right. $$$\alpha$ 为信息素重要程度因子 $\beta$ 为启发函数重要程度因子 $allow_k$ 表示蚂蚁待访问城市k
三种模型
- 第一种模型假设信息素总量一定。信息素浓度Q和经过路径的长度$L_k$成反比。
- 第二种模型中不使用经过的总路径,而仅仅使用相邻城市的路径长度。
- 第三种模型不管距离长短,释放的信息素都一样。
求解TSP问题
参数说明
蚂蚁数量:一般设置为目标数的1.5倍。当蚂蚁数量较多时,所有蚂蚁不容易收敛于一个解,而数量较少时,解的效果可能不会让人满意。
信息素重要程度因子:一般设置为[0,5]之间。蚂蚁移动过程中产生的信息素对蚂蚁的影响程度。参数越大,蚂蚁选择以前走过路径的可能性越大,会使蚁群更容易的收敛,导致搜索的随机性减弱不利于寻找全局最优解,过小就没有了信息素的意义。
启发函数重要程度因子:一般设置为[0,5]之间。反映了启发式信息在指导蚁群在路径搜索中的相对重要程度,其大小反映的是蚁群寻优过程种先验性、确定性因素作用的强度。越大越容易导致收敛过快。
信息素挥发因子:一般设置为[0.2,0.5]之间。指信息素的消失水平。它的大小直接关系到算法的全局搜索能力和收敛速度,过大导致信息素挥发过快,一些较好的路径会被排除,过小导致路径残留信息素较多,影响算法效率。
信息素常量:一般设置在[10,1000]。指蚂蚁在将路径走完时总共释放的信息素数量,往往和启发函数一起作用,问题规模越大信息素越高较好。
迭代次数:一般设置为[100,500]之间。指整个蚁群累积搜索了多少次,注意蚁群算法在搜索过程种是整个蚁群同时开始搜索,然后此蚁群循环迭代,迭代次数设置的过高对算法没有实质意义,一般使其能够收敛即可。
Python
Matlab
%% I. 清空环境变量
clear all
clc
%% II. 导入数据
% load citys_data.mat
citys = [16.4700 96.1000
16.4700 94.4400
20.0900 92.5400
22.3900 93.3700
25.2300 97.2400
22.0000 96.0500
20.4700 97.0200
17.2000 96.2900
16.3000 97.3800
14.0500 98.1200
16.5300 97.3800
21.5200 95.5900
19.4100 97.1300
20.0900 92.5500];
%% III. 计算城市间相互距离
n = size(citys,1); % 城市数量
D = zeros(n,n);
for i = 1:n
for j = 1:n
if i ~= j
D(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2));
else
D(i,j) = 1e-4; %如果是0会导致矩阵对角线都是0 导致启发函数无穷大 因此取个很小的值
end
end
end
%% IV. 初始化参数
m = 50; % 蚂蚁数量
alpha = 1; % 信息素重要程度因子
beta = 5; % 启发函数重要程度因子
rho = 0.1; % 信息素挥发因子
Q = 1; % 常系数
Eta = 1./D; % 启发函数
Tau = ones(n,n); % 信息素矩阵
Table = zeros(m,n); % 路径记录表,每一行代表一个蚂蚁走过的路径
iter = 1; % 迭代次数初值
iter_max = 200; % 最大迭代次数
Route_best = zeros(iter_max,n); % 各代最佳路径
Length_best = zeros(iter_max,1); % 各代最佳路径的长度
Length_ave = zeros(iter_max,1); % 各代路径的平均长度
%% V. 迭代寻找最佳路径
while iter <= iter_max
% 随机产生各个蚂蚁的起点城市
start = zeros(m,1);
for i = 1:m
temp = randperm(n);
start(i) = temp(1);
end
Table(:,1) = start;
citys_index = 1:n;
% 逐个蚂蚁路径选择
for i = 1:m
% 逐个城市路径选择
for j = 2:n
tabu = Table(i,1:(j - 1)); % 已访问的城市集合(禁忌表)
allow_index = ~ismember(citys_index,tabu);
allow = citys_index(allow_index); % 待访问的城市集合
P = allow;
% 计算城市间转移概率
for k = 1:length(allow)
P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta;
end
P = P/sum(P);
% 轮盘赌法选择下一个访问城市
Pc = cumsum(P);
target_index = find(Pc >= rand);
target = allow(target_index(1));
Table(i,j) = target;
end
end
% 计算各个蚂蚁的路径距离
Length = zeros(m,1);
for i = 1:m
Route = Table(i,:);
for j = 1:(n - 1)
Length(i) = Length(i) + D(Route(j),Route(j + 1));
end
Length(i) = Length(i) + D(Route(n),Route(1));
end
% 计算最短路径距离及平均距离
if iter == 1
[min_Length,min_index] = min(Length);
Length_best(iter) = min_Length;
Length_ave(iter) = mean(Length);
Route_best(iter,:) = Table(min_index,:);
else
[min_Length,min_index] = min(Length);
Length_best(iter) = min(Length_best(iter - 1),min_Length);
Length_ave(iter) = mean(Length);
if Length_best(iter) == min_Length
Route_best(iter,:) = Table(min_index,:);
else
Route_best(iter,:) = Route_best((iter-1),:);
end
end
% 更新信息素
Delta_Tau = zeros(n,n);
% 逐个蚂蚁计算
for i = 1:m
% 逐个城市计算
for j = 1:(n - 1)
Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i);
end
Delta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i);
end
Tau = (1-rho) * Tau + Delta_Tau;
% 迭代次数加1,清空路径记录表
iter = iter + 1;
Table = zeros(m,n);
end
%% VI. 结果显示
[Shortest_Length,index] = min(Length_best);
Shortest_Route = Route_best(index,:);
disp(['最短距离:' num2str(Shortest_Length)]);
disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);
%% VII. 绘图
figure(1)
plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...
[citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');
grid on
for i = 1:size(citys,1)
text(citys(i,1),citys(i,2),[' ' num2str(i)]);
end
text(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点');
text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点');
xlabel('城市位置横坐标')
ylabel('城市位置纵坐标')
title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')'])
figure(2)
plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:')
legend('最短距离','平均距离')
xlabel('迭代次数')
ylabel('距离')
title('各代最短距离与平均距离对比')
参考
数学建模——蚁群算法(Ant Colony Algorithm, ACA)-CSDN博客
算法设计与分析-TSP六种方法-贪心算法(最近邻点、最短链接)、蛮力法、动态规划法、回溯法、分支限界法、模拟退火_tsp算法-CSDN博客